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ABSTRACT

A theory for time-dependent thermal and gas diffusion in mechanically time-rate-

independent anisotropic poroelastic composites has been developed. This theory advances

previous work by the latter two authors by providing for critical transverse shear through a

three-dimensional axisymmetric formulation and using it in a new hypothesis for deter-

mining the Biot fluid pressure-solid stress coupling factor. The derived governing equa-

tions couple material deformation with temperature and internal pore pressure and more

strongly couple gas diffusion and heat transfer than the previous theory. Hence the theory

accounts for the interactions between conductive heat transfer in the porous body and con-

vective heat carried by the mass flux through the pores. The Bubnov Galerkin finite ele-

ment method is applied to the governing equations to transform them into a semidiscrete

finite element system. A numerical procedure is developed to solve the coupled equations

in the space and time domains. The method is used to simulate two high temperature tests

involving thermal-chemical decomposition of carbon-phenolic composites. In comparison

with measured data, the results are accurate. Moreover unlike previous work, for a single

set of poroelastic parameters, they are consistent with two measurements in a restrained

thermal growth test.



Nomenclature

Cl: degree of processing

Cp: heat capacity

ei: elastic strains

eit°t: total strains

hg: heat enthalpy

hR: heat of reaction

Kg: gas bulk modulus

k: permeability matrix

M: Biot's material constant

MWg: molecular weight

rag: gas mass increment per unit bulk volume

Ni: elemental shape functions

p: pore pressure

q: heat flux vector

R: universal gas constant

T: absolute temperature

u, w: radial and axial displacement components

vg: average gas velocity

oq: Biot's material constants; pressure-stress coupling factors

_i: thermal expansion coefficients of solid

[Sg: thermal expansion coefficient of gas

5i: unjacketed compressibilities

(_: porosity

_¢: thermal conductivity matrix

/a: gas viscosity

Pg: gas density

Pproc: density of processed solid
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Ps:soliddensity

Pvirg:densityof virgin solid

a:i:total stresses

_: gasvolumeincrementperunit bulk volume

_tot:total gasvolumeincrementperunit bulk volume
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1. INTRODUCTION

Poroelasticity has been applied to numerous problems in which a fluid, diffusing

through a deformable solid, influences the mechanical behavior in a coupled manner. The

most common applications involving solid deformation are in geotechnical engineering

[1]. Problems coupling fluid diffusion to thermal or electronic diffusion have also been

solved within a rigid matrix. Such problems feature two independent field variables,

namely temperature and pressure. Raising the level of complexity to three or more inde-

pendent field variables, material deformation has been coupled to gas and thermal diffu-

sion in the study of a high temperature thermal insulation material by Sullivan [2],

Sullivan and Salamon [3], from which this work is launched, and Weiler[4].

The theory is founded upon that of Biot [5] who developed constitutive relations

for the elastic behavior of saturated, isotropic porous soils and Biot and Willis [6] who

expanded them to include anisotropy. Their theory provides a mathematical model for the

mechanical behavior of the bulk material by phenomenologically linking the interaction

between the solid and fluid phases in the sense of "mixtures". Nut and Byerlee [7] dis-

cussed the concept of effective stress and defined an effective stress law for isotropic,

fluid-filled porous materials. Carroll [8] further developed the effective stress law for

anisotropic porous materials and Kurashige [9] reported an anisotropic, thermoelastic for-

mulation. All these formulations are for treatment of geo-materials.

The class of problems treated here involve an evolutionary process in time during

which solid deformation, pore pressure (due to diffusing gases) and change in temperature

in poroelastic bodies interact. In general the process may involve fluid mass generation

associated with conversion of a solid from a virgin state to a processed state driven by a

change in energy level in a control volume through which mass and energy flux may trans-

fer. In particular, the present application deals with thermally activated, chemical decom-

position of carbon-phenolic composite material used in rocket liners. The theory is more

general and may have other applications.

Carbon-phenolic is a polymeric material which chemically decomposes into solid

carbon (char) and pyrolysis gases when exposed to high temperature. Initiating at an

exposed surface, a char layer forms, governed by chemical reaction kinetics, and advances
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into themateriallaggingthethermalfront.Thesolidcarbonleft behindhasaporousstruc-

turewhich permitsgeneratedprocessor decompositiongasesto escape.This convective

actionassistedby a low thermalconductivityof charinsulatestheinterior virgin material

from heat.Hencecarbon-phenolicis suitablefor hightemperatureinsulationapplications.

Thispaperadvancesthetheoryin [2, 3] by (1)creatingamodelfor nonuniform,

thermalconvectivefields, (2)developingthecoupled,three-dimensional,axisymmetric

finiteelementformulationfor anisotropic,axisymmetricstructuresin ageneralform and

(3) employinganewempirical,butphysicalform for Biot's pressure-stresscouplingfac-

tor. It thenusesthis formulationto simulatetwo high temperaturetestsdoneby Stokes

[10]and,afterdeterminingaconsistentsetof poroelasticparameters,achievesexcellent

agreementwith thetestdata.Thefollowing sectionscoverthetheoryandfiniteelement

formulation,bothcontainnew approaches,andthenapply themto experimentsondecom-

posingcarbonphenolicspecimens.

2. GENERALTHEORY

The problem is first formulated in a Cartesian flame and then set into cylindrical

coordinates (r,0,z) such that r is the radius of a cylinder and z is the generator normal to

the r, 0-plane where 0 is the angle of rotation about z. Axial symmetry is invoked by sub-

jecting all fields (-) to the constraint _(.)/_0 = 0. The resultant degrees of freedom are dis-

placements u, w in the r, z directions respectively, pore pressure p and temperature T.

Material points are occupied by both solid and fluid, overlaid in the sense of mix-

tures, and constitute the bulk material. The porous solid is material devoid of fluid. More-

over solid andfluid refer to pure solid and pure fluid material, respectively. Stresses are

usually referenced to bulk area, hence they are termed effective. However any quantity

denoted (.)S pertains to the pure solid; such stresses are referenced to pure solid area. Pres-

sure p is that in the pure fluid, i.e., herein the gas.

Mass flux through the porous solid is assumed to be slow, irrotational flow. Tem-

perature at a material point is assumed common to both the solid and fluid, hence perfect

heat transfer occurs between them in a control volume. Heat transfer occurs as conduction
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in thesolid andasconvectionby diffusion of thegas.

Thetheory is formulatedto achievea linear,time-marchingsolution.Nonlinear

expressionswhich arisearelinearized.

2.1 Constitutive Equations

We consider a linear elastic material with porosity ¢ and stiffness C whose pores

are saturated with gas under pressure p which is taken positive for compression. The small

elastic strain in the solid, in terms of total and thermal strains, is e i = ei t°t - [3iAT. Similarly

the elastic pore fluid volume fraction change is _ = _tot + _[3gAT with a plus sign because

pore fluid is lost under a temperature increase at constant pressure. The semi-complemen-

tary form of strain energy W [11] is

1 1 2
W = _ (Cijeie j- 2t_ie i p - _p ) (1)

from which the total stresses q_i(solid plus fluid pressure referenced to the bulk area) and

total fluid volume increment per unit bulk volume _tot follow:

_W
= t ei - " ")_,AT)-Zi -_i = Co " tot (ZiP (2)

_tot DW 1 {:t (e t°t - _iAT)
- Op t_gAT = ___lp + i, i - (p_JgAT (3)

where repeated subscripts are summed. Reduced indicial notation, employed to represent

tensorial quantities, will be defined subsequently.

In equation (3), the coefficient M is determined through the isothermal unjacketed

test, Biot and Willis [6], and can be expressed in terms of Biot's coefficients cti and unjack-

eted compressibilities _5i as

Kg
M=

q_ - q_ (51 + 52 + 53) Kg + o_iSiKg (4)
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whereKg= -V(Op/_V) T is the gas bulk modulus at constant temperature taken positive for

decreasing volume under compression. For an ideal gas, Kg - p and the last term in equa-

tion (3) varies as AT/T which at high temperatures will be small and may be ignored.

The compressibilities may be determined directly from the unjacketed test, or by

referring to Carroll [8],

3

m=l

where Ss denotes an elastic compliance of the solid phase material. An alternative method

is to first set oq, then use (see the dissertation by Lee [12])

{_i} .- [Cij ] -1 ( { 1} - {ai} ) (6)

where { 1 } is a column matrix with entries { 1 1 1 0 0 0 }. Conversely, given {8i}, equation

(6) may be inverted to determine {_ }. The alternative route is adopted here because the

freedom to determine c_ from experiment counters uncertainty in the values of the material

constants during decomposition.

For further information, details are in [12]. A general development in Cartesian

coordinates is given by Weiler [4]; an alternative is given by Kurashige [9].

Axisymmetric considerations. The most general material which meets the axi-

symmetric constraint is monoclinic with material symmetry about the r, z-plane [12] and

is referred to here as r, z-symmetric. The elastic stiffness matrix for this material is written

(using the notation 1 -= rr, 2 - 00, 3 = zz, 4 =- Oz, 5 =-rz and 6 - 1"0) as

[c]

Cll

Sym

CI2 C13 0 C 0

C22 C23 0 C 0

C33 0 C 0

C¢4 0 C,

C55 0

C66

(7)



and the material has o_4 = (/,6 = 0 and 94 = [36=0. For this case, the constitutive equation (2)

becomes

"CI

x3 I

'_4

'_5

"C6

= [c]
etO, fST1 ]

1 -- (X 1

et2°' _ST O_2

tot _ T ct 3e 3 - _ -p.

oj:e4 0

tot _T ct5e 5 -

tol 0

e6

(8)

where

etlO, 3u et2Or u ,o, Ow etsO, 3u 3w el4ot e_Ot=0 (9)= 3--r = r e3 = _ = 3-z+3--; =

2.2 Momentum Equations

In cylindrical coordinates (r,0,z), the equations which govern the motion of the

porous, fluid-filled material due to external loads in the absence of body forces and under

quasi-static conditions are written as

3"_1 1 31;6 3"C5 1

_ + r _ + _ + r (_1 - _2) = 0

31;6 1 3X2 3"1:4 1

O----r-+ r_ + _ + 7 (1:6 +1:4) = 0

3"c5 1 3"_4 3"c3 1

3--7+ 7-6-ff + -OTz+ 7_ 5 =o

(I0)

Axisymmetric case. Under the constraints of axisymmetric conditions (v = 0 and

3(-)/30 = 0), e4 t°t = e6 t°t = 0 from equation (9), "c4 = % = 0 from equation (8) and the sec-



ondequationin (10) is automaticallysatisfied.Thentheequationsreduceto

8Xl _'% 1
_-7 + -_- + 7 (_1 - _2) =0

O--7+--gz-+ r 5 0

(11)

2.3 Gas Diffusion Equation

The differential equation goveming the flow of fluid through the anisotropic

porous solid skeleton, derived from the principle of conservation of mass within a control

volume, is

Om g c)m gen
Ot + V. (ggvg) = Ot (12)

where pg and Vg are the mass density and velocity of the gas, respectively, and mg gen > 0 is

the mass generation term (mg gen < 0 is the mass consumed). On the left hand side, the first

term is the storage term which represents the time rate of gas mass inside the control vol-

ume and the second term is the diffusion term which defines the flux of gas mass crossing

the boundaries of the control volume.

We assume the gas density Pg constant during an incremental change in time.

Hence it is treated as a parameter which is updated at each numerical time step. The incre-

mental change in gas mass per unit bulk volume is obtained by multiplying the total vol-

ume increment per unit bulk volume _tot by the gas density pg. Therefore

Omg __ O_ t°t
Ot - 9g Ot (13)

Hence from equation (3), the mass storage term is written in terms of pressure,

strains and temperature as
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I ",, lOt

Omg 10p oei

-- P g --M-_ + (Xi Ot
(14)

In the second term on the left hand side of equation (12), the volume average gas

velocity components in cylindrical coordinates are expressed by Darcy's law for slow,

irrotational flow as

_1k
Vg = • Vp (15)kt

where I.t is the gas viscosity and

i k6 kil
k = k 6 k 2 k4 (16)

5 k4k

is the permeability matrix for an anisotropic porous body.

The right hand side of equation (12) represents the rate of increase in gas mass per

unit bulk volume due to some chemical conversion or phase change process and this is

equal to the rate at which the solid phase gives up or takes in mass per unit bulk volume.

Mathematically,

_m gen _ 8Ps
_t Ot (17)

where the solid density Ps may be expressed as a linear function of the degree of process-

ing clas in [13], hence

Ps = ClPvirg + (1 - Cl) Pproc (18)

in which c 1 is unity at the virgin stage and zero at the completely processed stage. Expand-

ing equation (17) using the chain rule,

8m_ _" _ dP s dc 1 _ dc l

Ot dc I dt (Pvirg-PP r°c) dt
(19)
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in which therateof processingdcl/dt is defined in Section 4.1 by setting up a series of

Arrhenius kinetic reaction equations based on experimental data.

Substituting equation (14), (15), (16) and (19) into equation (12) gives

Pg 8p (c3eti°t_ 3T
--_ (-_) q-Pgai_---_ )--_)g(_i_id-_g) (-_)

dcx 1+ (Pvirg-Pproc) (--d-f) -pgV. ( k. Vp) =0

(20)

where gas density is treated as a constant locally in space. Equation (20) involves temporal

and spatial derivatives of the gas pore pressure and accounts for the changes in pore pres-

sure due to chemical processing, temperature variations and solid deformations.

Axisymmetric case. The gas diffusion equation (20) is reduced for a monoclinic r,

z-symmetric material in cylindrical coordinates to

Pg _P OI 3u u Ow Ow Ou 1_ (--_) +13g_ O_l-_-_+_2r +_3-_-d-_5(-_-_-+_-_)
I... ...1

_T dCl

-- [_g (0_1_ 1 q- 0_2_ 2 -b 0_3_ 3 + 0_5_ 5 -b (_g) -_ q- (Pvirg -- Pproc )dt

1 _ V kl ap k5 _p)q _ k5 ap k3 op
-Pg { r _--r [_r (_--_ + _-_-_ j + _--] (_- _-i + -ff-_) } =0

(21)

where the coefficient M is obtained from equation (4), k4 = k6 = 0 for r, z-symmetric mon-

oclinic materials and equations (9) under axisymmetric conditions are employed.

2.4 Energy Conservation Equation

The equation of energy conservation which governs the balance of energy in a con-

trol volume is written as
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DE _Egen

3--_-+ V" q - 3t (22)

where on the left hand side, the first term is the storage term which represents the rate at

which energy is stored within the control volume and the second term is the diffusion term

which defines the flux of energy convecting through the control volume and the right-hand

side represents the rate at which energy is being generated or consumed due to the process.

The rate of the energy stored in the control volume is the sum of the rate of the

energy stored in the solid and gas. The first term of equation (22) may be expressed as

DE OT

_t - [(1-_)Os(Cp)s+_Pg(Cp)g] (-_) (23)

where the subscripts s and g stand for solid and gas, respectively.

The energy diffusion term consists of two contributions: heat conduction in the

bulk solid and heat convection carded by the gas flow through the pores.

q = qcond + qconv (24)

The heat conduction term can be written by the Fourier conduction law for aniso-

tropic materials as

qcond = --1¢. VT (25)

where _c, the conductivity matrix, is similar in form to equation (16). The convective heat

flux is the gas enthalpy hg times the gas mass flux 9gVg and is written as

qconv = hgpgVg- (Cp) gpgVgT (26)

where the final term is valid if the gas is assumed to be ideal. Substituting equations (25)

and (26) into (24) and taking the divergence of the result gives

V.q = -V. (K:-VT) -pg(Cp)gVT. (-lk lk_t " Vp) - pghgV. (_t " Vp) (27)

where the second and first forms of (26) are operated upon to get the second and third

terms, respectively, and (15) is recalled. The reason for this juggling act is to strengthen
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couplingbetweenvariablesyet, from intuition, circumventnonlinearitieswherepossible.

Notably,the last termdoesnot appearin Sullivan andSalamon[3] becausegasvelocity

wasassumedto belocally constant.Howeverfor theproblemsinvolving thermalgradi-

ents,see[12],bothof thesetermshavea significanteffecton theprocess.

Theenergydensitydueto theheatgeneratedin thecontrolvolumeis expressedby

theproductof thevirgin materialdensityPvirg, the heat of reaction h R, and the rate of the

process

dcl/dt as

_E gen dc 1

_t - 9virghR--d-i- (28)

Substitution of equations (23), (27) and (28) into equation (22) yields

_T

[ (t -¢)os(Cp)s+¢pg(Cpg] _ -v. (_:. VT)

1 dcl-pg(Cp)gVT. ( k. Vp) -pghgV. (_k. Vp) +PvirghR--_- =0

In the energy conservation equation (29), both pressure and temperature are inde-

pendent variables. The nonlinear term (3rd term) can be linearized by choosing either

pressure or temperature as a variable parameter and this choice is discussed below equa-

tion (32).

(29)

Axisymmetric case. The energy conservation equation (29) for the axisymmetric

case in cylindrical coordinates is written as

37 ( [ ( 1 - ¢) ps (Cp)
dc 1

s + CPg (Cp) g] Tg) + PvirghR dt

1_ I OT OT ] _ 3T OTrOr r(_cl_+K:5-_z) - _z (K:5-_+_c3-_)

I klOp ksOp 3T .ksOP k3Op)OT]-pg(Cp)g (-_-_--_+-_-_--_-)-_.+1-_-_--_+_-_. -_-

l a [ kl ap g5ap I a ksap k3 ap )-p h_{r_ r(-ff_+-ff_) +_(-ff_:+-g-_ } =0

(30)
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Becausethisequationemploysthefinal termin equation(26), it is restrictedby the

assumptionof an idealgas.

3. AXISYMMETRIC FINITE ELEMENT FORMULATION

The axisymmetric finite element equations are obtained by successively applying

the Galerkin method to equations (11), (21) and (30) in the following form:

IN i (LHS of referenced_equation) rdA = 0 (31)
A

where LHS denotes the left hand side and A is the domain in the r, z plane.

The nonlinear, penultimate term in equation (30), namely,

[ klop _z oT ksOp k3Op)_T 1-08(cp (32)

is linearized by choosing the spatial derivatives of temperature as parameters since pres-

sure is a more sensitive factor to the processes studied. Then applying Green's theorem,

and integrating (31) and (32) by parts (Lee, 1993), the following matrix equation is

obtained.

d
[C]_{a}+ [K] {a} = {F} (33)

where

Ii ° °o]
0 0 [K] =

[C] = . Cpw Cep Cp

0 0 CTT_

[KwUU Kuw Kup KuT]

u Kww Kwp KNwT[

o°
0 Krp Krr _

The elements of [C], [K] and {F} are explicitly written in the Appendix.

(34)
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It shouldbenotedthatthecouplingtermKTp does not appear in Sullivan and Sala-

mon [3]. They treat the spatial derivatives of pressure as parameters which causes these

terms to be deposited on the diagonal of the [K] matrix rather than in the KTp term. The

above formulation results in a more strongly coupled system of equations and is employed

here.

For integration over time, the variably weighted Euler numerical method [14] is

employed which leads to

[Key/]" {a} "+ 1 = {Fef/} ,, (35)

where

[K eff ] n _
1

- --[Cln+0[K]n-0[Hln (36)
At"

{Feff}n = {F}n+I--_[C]n-(1-0)[K]n-O[H]n l{a} n (37)

and superscript n denotes the time step. In equations (36) and (37), the matrix [HI may be

defined as

3{F} .n

[H]" = (38)

For solution by the fully implicit time integration scheme, the matrix [HI is required.

Details of its formulation are given in the dissertation by Lee [12]. Nonzero elements of

[H] are given in the Appendix.

In equation (35), [Keff] n and {Feff} n are the effective stiffness matrix and effective

force vector at time step tn respectively. To obtain the material displacements, pore pres-

sure and temperature at each time step, equation (35) is solved for {a }n+l simultaneously

using a factorization procedure which is a version of Gauss elimination with partial pivot-

ing [ 15].
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4. DECOMPOSING CARBON PHENOLICS

The governing equations for poroelastic material with thermal and gas diffusion

provided in Section 2 are applicable to thermochemically decomposing carbon-phenolic.

The momentum equations remain the same, but the generation terms in the gas diffusion

and the energy conservation equations require further specialization. The objective is to

specialize and apply the linearized theory to models of carbon-phenolic material and sim-

ulate laboratory tests in order to demonstrate it and establish poroelastic parameters over a

nonlinear decomposition process.

4.1 Governing Equations

For the mass generation term (19) in the gas diffusion equation (12), the rate of gas

mass accumulation is due to decomposition reactions and, from Sullivan and Salamon [3],

is given by

Omggen N d(cl) i
_t -- Z RFOvirg [ (Wol i- (Wc) iI d------_-

i=1

(39)

where RF is the weight fraction of the virgin composite which is resin, 9virg is the virgin

density of the composite, (Wo) i is the fractional weight of the resin which undergoes the

ith reaction, (Wc) i is the fractional weight of the resin which is left as a solid residue by the

ith reaction, and N is the number of reactions. Following [3], the rate of charring d(Cl) i/dt

is expressed by the Arrhenius kinetic reaction equation

d(cl) i
dt - (AS) i(cl) [n')'exp (40)

where A s and n s are the Arrhenius constants and E s is the activation energy for the chem-

ical reaction. These constants for carbon-phenolic are listed in Table 1.
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In this work, pyrolysis gases are treated as ideal and the gas density 9g in the gov-

erning equations is obtained by the ideal gas law

MWg
9g - _ P (41)

where MWg is the molecular weight of gas and R is the universal gas constant. The

mechanical and thermal properties of dry carbon-phenolic are listed in Table 2.

4.2 RTG and FTE Tests and Their Finite Element Models

Stokes [10] conducted two high temperature experiments on cylindrical carbon-

phenolic specimens (dry FM5055), fabricated so that the plane of the carbon fabric is per-

pendicular to the longitudinal axis of the specimen, in order to determine thermomechani-

cal behavior during chemical decomposition. The restrained thermal growth (RTG) test

measured both the stress required to hold the specimens at a constant longitudinal strain

and the resulting lateral strain. The free thermal expansion (FTE) test measured the result-

ing longitudinal strain. The specimens were heated uniformly at a rate of 5.55 degrees

Kelvin per second (10 degrees Fahrenheit per second), and this was controlled using ther-

mocouples embedded in the specimens.

The geometry, coordinate system and finite element mesh for the RTG and FTE

test specimens are shown in Figure 1. In the RTG test, it was assumed that the end con-

straints prevent pyrolysis gases from flowing along the axial z-direction. Hence, imperme-

able conditions 3p/_z = 0 are prescribed at z = 0 and z = b. However in the FTE test, the

pyrolysis gases do flow along the z-direction, hence to allow the gases to escape, atmo-

spheric pressure is specified at z = 0 and z = b. The initial conditions are T = 293 degrees

Kelvin and p = 1 atm in the model and the boundary conditions are summarized in Table 3.

The energy generation term (28) in equation (22) is simplified in order to maintain

a uniform temperature increase in the model. An internal heat source is prescribed in each

finite element through the integral equation
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oEgen = INiqintrdA (42)_-----__ (aint) i
A

where qint is the heat generation per unit area, and (Qint)i is an equivalent nodal value. The

value of qint, found by trial and error in order to achieve the rate of temperature increase of

the specimen (5.55 degrees Kelvin per second), was determined to be 11.4 x 106 Joule/

rrfl s ec.

4.3 Results for the pressure-stress coupling factors

Calculation of the pressure-stress coupling factors from equations (5) and (6) for

the virgin elastic composite material requires an experiment, the Biot and Willis [5, 6]

unjacketed test. Unfortunately such an experiment for carbon-phenolic has not been con-

ducted. Moreover after decomposition commences, (5) and (6) are suspect because of

severe changes in material morphology and properties. Hence further experiments would

be desireable. In short, requisite data to calculate these poroelastic parameters does not

exist.

Results are obtained by simulating the RTG and FTE tests and varying o_, then

comparing the material response to experimental data. This was done by physical intuition

and trial and error based upon a hypothesis introduced by Lee [12]. This hypothesis

assumes (1) isotropic porosity, i.e., oq = ix, i = 1, 2, 3, 5, (2) a higher proportion of closed

pores in virgin material, and (3) increased pore channel opening under high shearing stress

action. Consequently, the pressure-stress coupling factor (1) is initially high and, if data is

available, can be determined from material properties and equations (5) and (6), (2)

decreases as porosity opens, thus inversely as permeability increases, and (3) is further

decreased if shear stress enhances pore channel growth. (Note: the procedure employed

here is to guess ct, then use equations (6) and (4) to compute M; hence o_ is a curve fit

parameter.)

In Figures 2 and 3, average restraining stress and average lateral strain of the RTG

test simulation are plotted versus average temperature. Also, in Figure 4, average longitu-
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dinal strainof theFTEtestsimulationisplottedversusaveragetemperature.Thevariation

with temperatureof the pressure-stress coupling factor o_ used in the RTG and FTE simu-

lations, shown in Figure 5, is that for which the numerical solutions most closely match

the measured responses. Only values at comers of the curves were adjusted, those in

between corner values were linearly interpolated. The pressure-stress coupling factor for

the RTG test simulation was decreased more than that for the FTE test simulation due to a

higher shear stress level in the RTG test simulation. Notably for the RTG test simulation, a

single choice for the varying pressure-stress coupling factor correlates with data for both

restraining stress and lateral strain; Sullivan and Salamon [3] required different constant

values to achieve satisfactory results in their parametric study.

5. CONCLUSION

A coupled set of governing equations for a poroelastic solid with thermal and mass

diffusion is derived in a practicable form which requires a minimum of experimental data,

yet are sufficiently realistic to entertain engineering problems. In the energy conservation

equation, both conductive heat transfer in the bulk solid and convective heat transfer car-

ried by the diffusive gas through the bulk porous solid are treated. The convection terms in

which pressure is the independent variable are included in the energy conservation equa-

tion so that the convection heat transfer by the diffusive gas is accounted for more accu-

rately than in [3]. These convection terms are coupled with the gas mass diffusion term in

the gas diffusion equation, and therefore pressure appears in both the gas diffusion equa-

tion and the energy conservation equation as an independent variable. Hence the theory

now handles the thermal and gas diffusion in the poroelastic solid in a strongly coupled

manner.

The material formulation includes the most general anisotropic material under the

constraints of axisymmetry, and therefore permits application to realistic, three-dimen-

sional composite structures. Importantly the axisymmetric formulation permits accurate

computation of the transverse shear stress which is hypothesized to play a significant role

in pore channel opening during material decomposition and in turn enables finer definition
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of the pressure-stresscouplingfactorduringdecomposition.

Thecoupledtheory,whenappliedto carbon-phenolicmaterialtests,providescon-

sistentandclosecorrelationswith theexperimentaldatausinganempirically determined

pressure-stresscouplingfactor suggestedby Lee [12].The improvedcorrelationwith

experimentaldatain simulatingthesetestsis attributedto thenewformulationfor the

pressure-stresscouplingfactor.

It is anticipatedthat thestrongcouplingof theequationswill play amajorrole in

accuratecomputationof spatiallynonuniformthermalproblemssuchasthoseencountered

in rocket liner structuresduring firing.
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APPENDIX

The elements of [C], [K] and {F} are

( guu) ij = _ Ni,r ( CllNj, r + C121Nj + C15Nj, z) rdA

A

+ _Ni, z (C15Nj, r + C251Nj + C55Nj, z)rdA

A

!N
+ fNi(C12Nj, r+C22r j+C25Nj, z) dA

A

(guw) ij -- _Ni, r ( CI5Nj, r q- c13gJ, z) rdA + _Ni, z ( C55Ni, r + C35Nj, z) rdA

A A

+ fNi (C25Nj, r + C23Nj, z) dA
A

(Kup) ij = - _Ni, rtZlNjrdA - _Ni, z(ZsNjrdA - _Ni°t2NjdA
A A A

(guT) ij = - fNi, rQ1Nj rdA - _Ni, zQ5Nj rdA - fNia2Nj dA

A A A

( gw") ij "- f Ni, r ( ClsNj, r -1- C251Nj -t- C55Nj, z) rdA

A

+ fNi, r (C13Nj, r + C23 1Nr ) + C35Nj, z) rdA
A

(Kww) q = _Ni, r (C55Nj, r + C35Nj, z)rdA + _Ni, z (C35Nj, r + C33Nj, z) rdA
A A

(Kwp) ij = - _Ni, r°tsNjrdA - _Ni, z°t3NjrdA

A A

(KwT) ij = - _Ni, rQsNj rdA - _Ni, zQ3NjrdA
A A

k 1

-" _gi, rPg (--_gj, r
A

k5 k 5 k3

+ -_Nj, z)rdA + fNi, zOg (-_Nj. r + -_Nj, z)rda
A

(A-l)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)
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_T kl k 5

(KTp) ij = --Og (Cp) g-_!Ni(--_Nj, r jr -fflVi, rdA

_T N k5 k3 kl k5
-- p g ( Cp) g-_-_ ! i ('-_Nj, r-t- --_Nj, z) rda + p ghg!Ni, r (--_gj, r + -_Nj, z) rdA

k 5 k 3

+ pghgfNi, z. (-_Nj, r + -_Nj, z)rda
A

(Krr)/j : INi, r (KINj, r + K5Nj, z)rdA + INi, z (I¢,sNj. r + _3Nj, z)rdA
A A

( Cpu) ii = INiP g ( OtlNj, r + O_sNj, z) rdA + INitx2P gNjdA
A A

( Cp w) ij = INiPg (_5Nj, r + _3Nj, z ) rdA
A

(Cp,)i = [.Ni NFaA
A

(CpT) ij = -INiPg ((II_l +_2_2 + C_3_3 + _5[_5 +,[3g)NjrdA
A

(Crr) V= fN [(1-¢)p (Cp)+,pg(Cp)glNjrdA
A

(Fu) i = INit_rds

S u

I ,(Fw) i = Nitwrds

Sw

(Fp) i = - (Pvirg-Pproc) INi(cl)rdA-p,INi(v;) knkrds
A sv

(FT) i = - PvirghR_NidlrdA - INi ( q* ) I_nkras
A s r

where

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

QI = Cl1_1

03 = C13_1

+ C12_2 "t- C13_3 -t" C15_5

"t- C23 _2 -t- C33 _3 d- C35 95

Q2 = c12_1 + c22_2 + c23_3 + c25_5

Q5 = C15_1 + C25_2 + C35_3 + C55_5
(A-21)

and where Vg is the volume average gas velocity specified along the external boundary of
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arc lengthSp, q* is the heat flux specified on ST, n i represents components of the outward

unit vector normal to the boundaries, and t r and tz* represent traction components distrib-

uted over the external boundary of arc length s u and s w in the r and z directions, respec-

tively.

The [H] matrix is written explicitly as

°°[H] = 0 0 lip (A-22)

0 0 HT_

where

_Cl NiNjrd A(HP T) ij = --(Pvirg--_char ) _ ("_)
A

( HpT) ij = -PvirghR f (-_ ) NiNjrdA
A

(A-23)

(A-24)
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Table 1: Constants in the decomposition model for dry carbon-phenolic.

Reaction ESa(J/mole) A s ( 1/sec ) n s
number (i) W° Wc

1 88764.4 1.207305 × 10 lO 3.5 0.0015 0

2 117236 4.057500 × 109 6.5 0.095 0

3 211443.5 3.857777 x 1014 6.5 0.59 0.29

4 272155 5.583611 x 1015 3.3 0.3 0.19

RF = 0.3, h R = 0, MWg = 0.03 kg/mole
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Table 2 : Mechanical and thermal properties of dry carbon-phenolic.

property

EL

ET

VTL

VLT

VT

temperature range

T < 450 °K

1.517x101° Pa

1.793x101° Pa

0

0

0

450 °K < T < 533 °K

-1.412x108 T + 7.87x101° Pa

-1.7449x108 T +9.645x1010

Pa

-0.00343 T + 1.83819

-0.00289 T + 1.551

0

T > 533 °K

3.447x109 Pa

3.447x109 Pa

0

0

0

property

13T

(kT)vtrg/it

(kT)char/it

_virg

Pvirg

(Cp solid

value property

0.000006 m/m-°K b L

5x10 "21 m3-sec/kg (kL)virg/It

5x10 -13 m3-sec/kg (kL)char/It

0.02 _char

1500.0 kg/m Pchar

1400.0 J/kg-°K (Cp)gas

value

0.000012 m/m-°K

5x10 -21 m3-sec/kg

5x10 -13 m3-sec/kg

0.2O

1300.0 kg/m 3

1088.0 J/kg-°K

_Csotid 1.44 J/m-sec-°K _:gas 0.0 J/m-sec-°K
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Table 3 : Boundary conditions for the RTG and FTE test simulations.

location RTG Test FTE Test

r=0

r=a

z=0

z=b

U _

0T

2--7 = O,p = latin

W

W

0T 0p

=0z -_-0

OT Op
U _ --"Dr

0T

w = _--_ = 0, p =

-0

latm

1atm

1atm
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Figure 1 Finite element mesh for the RTG and FTE test simulations.
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